Project S-Bahn Cologne

ALST<mark>()</mark>M

Loads Intermediate Articulated Joint

Document Reference DOC1001972860			Document Revision A	Revision Date 18/10/2024		
Peter Fuchs Peter Fuchs (Oct 18, 2024 12:59 GMT+2) Peter Fuchs StM DE 18/10/2024 Author	<u>G. Kussatz - Klaan</u> G. Kitsatz-Klaass Georg Kussatz- Klaass StM DLE 18/10/2024 Verifier 1		Torsten Hinko Torsten Hinko (Oct18, 2024 13:07 GMT+2 Torsten Hinko CbC DL 18/10/2024 Verifier 2	Matthias Radant TAM 18/10/2024 Approver		ALSTÔM
			Confidentiality			
Public		F	Restricted	Confidential		Secret

Project S-Bahn Cologne Loads Intermediate Articulated Joint

CONTENTS

Purpose		5
Scope of Ap	pplication	5
Responsibil	lities for the Execution of this Document	5
Section 1 1.1	 Abbreviations, Definitions and Applicable documents Abbreviations	
1.2	Definitions	6
1.3	References	7
Section 2 2.1	2 – General Introduction	
2.2	Train Configuration and Layout	8
2.3	Intermediate Articulation Joint Description	8
2.4	Bogie and Carbody Masses for Dimensioning	11
Section 3 Section 4	• • • •	
4.1	Accelerations	13
4.2	Extraordinary Loadcases	13
4.3	Extraordinary loadcase combinations	19
4.4	Fatigue loadcases	20
4.5	Fatigue Load Combinations	25
A- /	APPENDICES	
	Longitudinal Joint Loads (MND500, 100% traction) Longitudinal Joint Loads (MND280, 100% traction)	
	Longitudinal Joint Loads (MND500, 50% traction)	
	Longitudinal Joint Loads (MND280, 50% traction) Longitudinal Joint Loads (MND280, Service braking)	
	Longitudinal Joint Loads (MND280, Service oraking)	
	Longitudinal Joint Loads (MND500, Service braking)	
	Longitudinal Joint Loads (MND500, Emergency braking)	
A- 9	Vertical loads : Lifting with bogie attached	

ALST<mark>(</mark>)M

Tables List

Table 1: Revision History	4
Table 2: References	
Table 3: Masses for dimensioning of inter-car joint [R6]	
Table 4: Accelerations	
Table 5: Lateral load at joint	
Table 6: Extraordinary load combinations at articulation joint	
Table 7: load collective for longitudinal fatigue loads for endurance limit approach (1E7 load cycles)	
Table 8: Fatigue loadcase combinations ; ECOMBXXa : negative vertical loading ; ECOMBXXb : positive vertical loading	

Figures List

Figure 1: Coordinate System	6
Figure 2: S-Bahn Cologne 11-car train configuration	8
Figure 3: S-Bahn Cologne train composition order	9
Figure 4: Forces at joint	10
Figure 5: Lateral load determination	15
Figure 6: Location of critical joint	16
Figure 7: interface loads ; 100% traction, MND500	
Figure 8: interface loads ; 50% traction, MND500	17
Figure 9: interface loads ; emergency braking, MND500	17
Figure 10: interface loads ; 50% traction, MND500	18
Figure 11: re-railing : equilibrium of forces/moments	18
Figure 12: articulation joint loads, Lifting	19
Figure 13: interface loads ; 100% traction, MND280	
Figure 14: interface loads ; 50% traction, MND280	23
Figure 15: interface loads ; emergency braking, MND280	24

REVISION HISTORY

Document Revision	Author	Revision Date	Page / Section / Paragraph	Comments
А	Peter Fuchs	18/10/2024	All	First issue

Table 1: Revision History

Purpose

The scope of this document is to describe the extraordinary and fatigue loads for the intermediate articulated joint of S-Bahn Cologne.

Scope of Application

This load specification is valid for the intermediate articulated joint between all S-Bahn Cologne cars in 9-car and 11-car configuration.

Responsibilities for the Execution of this Document

Accountable: This document is based on engineering instructions of the TDO structure mechanics. The MLE structure mechanics adapts the engineering instructions for the specific requirements of the project.

<u>Responsible</u>: MLE structure mechanics.

<u>Key Contributors</u>: Key contributors are the TDO structure mechanics and the bogies team.

Section 1 – Abbreviations, Definitions and Applicable documents

1.1 Abbreviations

•	EW	End car
•	JMBOG	Jacobs Motor Bogie
•	LDG	trailer bogie
•	MB	Magnetic Brake
•	MBOG	Motor Bogie

- MW Middle car
- TDG Motor bogie
- ZW Intermediate car

1.2 Definitions

The coordinate system is based on the EN 12663-1 [R1] and shown in Figure 1. The X-Axis of the vehicle is pointing in driving direction, the Y-Axis is the lateral and the Z-Axis the vertical one.

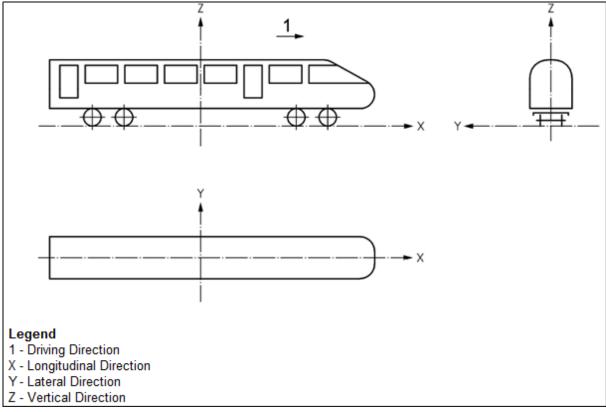


Figure 1: Coordinate System

1.3 References

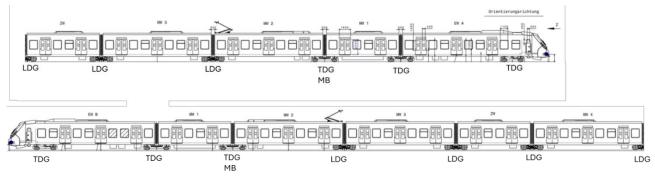
	Title	Reference
[R1]	Railway applications – Structural requirements of railway vehicle bodies – Part 1:	EN 12663-1: +A1 2014
	Locomotive and passenger rolling stock – German version	
[R2]	EN 13749 Railway applications - Wheelsets and bogies - Method of specifying the	EN 13749:2024
	structural requirements of bogie frames	
[R3]	Customer specification S-Bahn Köln :	
	20100_FLV,_Anlage_1_Fahrzeuglastenheft_V7.pdf	
[R4]	Materials Mechanical Characteristics	DTRF150209 K1
[R5]	S-Bahn Cologne train layout 11 – car train	AFD0006109634
[R6]	S-Bahn Cologne weight report: SBK_weight_Report_Articulated_A10-1212_2024-	
	05-21	
[R7]	Bogies for Cologne S-Bahn: Interface requirements bogie – vehicle	100703287 _
[R8]	Brake force summary Emergency braking SBK_A10_11Car_0ED_27062024	
	_133944.xls	
[R9]	Brake force summary Service braking SBK_A10_11Car_100ED_08032024	
	_160330.xls	

Table 2: References

Section 2 – General

2.1 Introduction

This specification describes the extraordinary and fatigue loads on the inter-car joints of S-Bahn Köln.

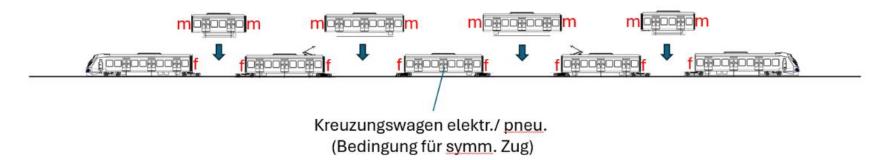

The accelerations for bogie and carbody masses and the resulting loads are defined in accordance with EN 12663-1[R1] and EN 13749[R2]. For Crash loadcases an increased longitudinal force is used, which corresponds to the crash absorber forces. The safety factors according EN 12663-1 shall be used.

The static and fatigue assessment of the following loadcases shall be performed according DTRF150209 [R4]. This includes the assessment approach, the material permissible and the safety factors of this Alstom standard. Deviations from this approach must be accepted by Alstom.

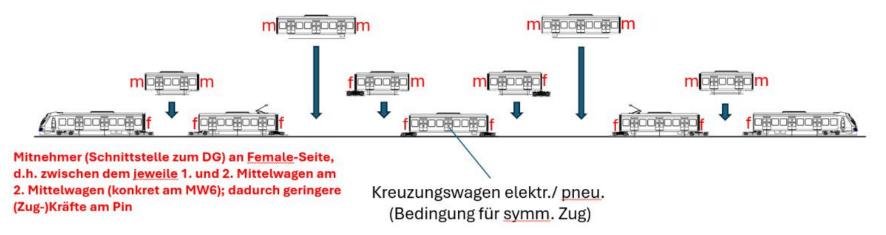
2.2 Train Configuration and Layout

The S-Bahn cologne trains will operate in a 9- and 11-car configuration.

The configuration and layout of the 11-car train is described in [R5] and Figure 2. In the 9-car train, both ZW-cars are omitted. The train consists of end-cars (EW), short (MW1, ZW) and long (MW2,3,4) middle cars. The train ends are supported by a conventional motor bogie, while Jacobs- trailer and motor bogies are located between the cars.

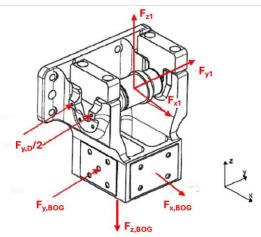


2.3 Intermediate Articulation Joint Description


The intermediate articulation joint consists of two sides. In one side (female side, see Figure 3), the traction link to the bogie is integrated.

Aufsatzreihenfolge Kurzzug (A10)

Aufsatzreihenfolge Langzug (A10)


Figure 3: S-Bahn Cologne train composition order

© ALSTOM SA 2024. All rights reserved. Reproduction, use or disclosure to third parties, without express written authorisation, is strictly prohibited.

RESTRICTED

Project S-Bahn Cologne **Loads Intermediate Articulated Joint**

The forces, acting on the joints are depicted in Figure 4.

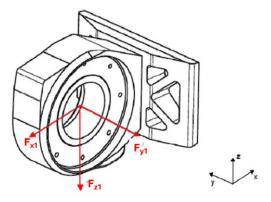


Figure 4: Forces at joint

2.4 Bogie and Carbody Masses for Dimensioning

Description	Mass	Comment
max. mass Jacobs motor bogie (m _{JMB})	9331 kg	
max. mass Jacobs trailer bogie (m _{JTB})	5030 kg	
max. axle load	19750 kg	includes the customer reserve
mass EWA carbody	40917 kg	MND280 condition; includes the customer reserve
mass MW1/MW7 carbody	27978 kg	MND280 condition; includes the customer reserve
mass MW2/MW6 carbody	27499 kg	MND280 condition; includes the customer reserve
mass MW3/MW5 carbody	25715 kg	MND280 condition; includes the customer reserve
mass MW4 carbody	26092 kg	MND280 condition; includes the customer reserve
mass MW-Z1/MW-Z2 carbody	18397 kg	MND280 condition; includes the customer reserve

Table 3: Masses for dimensioning of inter-car joint [R6]

Section 3 – Crash Requirements

A deformation unit is fitted to the intermediate articulation joint, which absorbs crash energy in two stages. Stage1 starts at 1600kN longitudinal load and Stage2 starts at 2600kN longitudinal load.

The proof load for the intermediate articulation joint is 1500kN in X-direction.

The deformable parts shall be guided in horizontal and vertical direction and the cars shall remain connected after the crash. To determine the safety margin in crash, the bogie shall be accelerated with ±5gX. For this loadcase the ultimate limit shall not be exceeded and the functionality of the intermediate articulation joint shall remain. For this evaluation, the loadcases ECOMB03a/b and ECOMB04a/b (see Table 6) shall be modified accordingly.

Section 4 – Loadcase Definitions

For the evaluation of the intermediate articulation joint, load combinations of static loadcases and combinations of fatigue loadcases shall be considered.

4.1 Accelerations

The accelerations of EN 12663-1[R1] are considered for the evaluation of the intermediate articulation joint and the bogie connection:

Symbol	Value	Comment
a _x	±3g	Acceleration for bogies according EN 12663-1
a _y	±1g	Acceleration for bogies according EN 12663-1
a _{xmax}	±2.5m/s²	Emergency braking according EN 12663-1
1	I	
a _{xS}	±0.18g	max. fatigue acceleration / deceleration
a _{yS}	±0.15g	max. fatigue acceleration according EN 12663-1
a _{zS}	(1±0.15)g	max. fatigue acceleration according EN 12663-1
	a _x a _y a _{xmax} a _{xS} a _{yS}	$\begin{array}{c c} a_x & \pm 3g \\ \hline a_y & \pm 1g \\ \hline a_{xmax} & \pm 2.5 \text{m/s}^2 \\ \hline \\ \hline \\ a_{xS} & \pm 0.18g \\ \hline \\ a_{yS} & \pm 0.15g \\ \end{array}$

Table 4: Accelerations

The acceleration due to gravity g is -9.81m/s².

The value of ±0.18g in X for the traction/braking fatigue loadcase is the maximum deceleration value, the train can reach in the MND280 configuration with the use of the magnetic brake.

4.2 Extraordinary Loadcases

4.2.1 ELC01 - Vertical load

The maximum difference force of the secondary spring loads, acting on the joint, is between the MW4 with maximum load (MXD500) and the MWZ2 in load configuration MVD. According to EN12663-1 Annex B, this load shall be scaled with a factor of 1.3.

 $F_{z1} = 1.3g^*(m_{MW4_MXD500} - m_{MWZ2_MVD})/2 = 1.3^* - 9.81 \text{m/s}^{\,2}*(16228 \text{kg} - 5318 \text{kg})/2 = -69.6 \text{ kN}$

Depending on which side of the joint is connected to which car, the vertical difference force can have a positive or negative orientation.

ELC01a – negative vertical load; ELC 01b – positive vertical load

4.2.2 ELCO2 – Maximum coupler tension

The maximum coupler tension force according EN 12663-1 is: F_{x1} =1000 kN.

4.2.3 ELCO3 – Maximum coupler compression

The maximum coupler compression force according EN 12663-1 is: F_{x1} =-1500 kN.

4.2.4 ELCO4 - Lateral forces at the intermediate articulation joint

a. Lateral limit load at bogie interface according Prud'homme (EN 13749 [R2]):

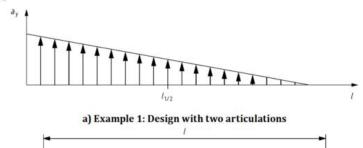
The Prud'homme force gives the maximum lateral wheel – rail forces, the rails can bear without lateral movement of the rails. This load is request in EN 12663-1 §6.5.1b. The maximum axle load of the train according [R6] is used for the calculation. It is calculated per axle:

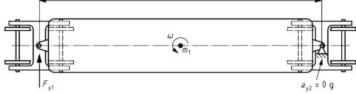
 $F_{y,prud'homme}=10^4+(m_{axle_max}*g)/3=10000 N+(19750 kg*9.81 m/s^2)/3=67.9 kN per axle = 135.8 kN per bogie.$ $F_{y,Bog}=F_{y,prud'homme}=135.8 kN$

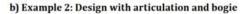
b. Lateral forces at bogie interface due to lateral accelerations (according Table 4) :

According EN12663-1 [R1], the connection between carbody and bogie needs to withstand the lateral acceleration of the bogie of a_{y,impact}=±1g.

 $F_{y_Bog}=-a_{y,impact}*m_{JMB}=-9.81 \text{ m/s}^{2}*9331 \text{ kg} = 91.5 \text{ kN}$


c. Lateral limit load according EN 12663-1 [R1] Annex B


The lateral load is determined according Figure 4:


b) Lateral load F_y determined as follows:

$$F_{\rm y} = a_{\rm y} p^2 m_{\rm l} + \frac{\dot{\omega} J_{\rm ZZ}}{l}$$

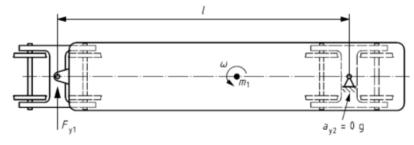


Figure 5: Lateral load determination

For S-Bahn Cologne, this leads to the following results :

EW-B	MW1	MW2	MW3	MW-Z2	MW4
30794	14372	16668	14883	10791	15132
16180	11020	16180	16180	11020	16180
10665	5510	8090	8090	5510	8090
0.341	0.500	0.500	0.500	0.500	0.500
926815	137016	409151	362579	131032	370716
9.81	9.81	9.81	9.81	9.81	9.81
69.827	46.316	56.210	50.087	37.050	51.003
7118	4721	5730	5106	3777	5199
	30794 16180 10665 0.341 926815 9.81 69.827	30794 14372 16180 11020 10665 5510 0.341 0.500 926815 137016 9.81 9.81 69.827 46.316	30794 14372 16668 16180 11020 16180 10665 5510 8090 0.341 0.500 0.500 926815 137016 409151 9.81 9.81 9.81 69.827 46.316 56.210	30794 14372 16668 14883 16180 11020 16180 16180 10665 5510 8090 8090 0.341 0.500 0.500 0.500 926815 137016 409151 362579 9.81 9.81 9.81 9.81 69.827 46.316 56.210 50.087	30794 14372 16668 14883 10791 16180 11020 16180 16180 11020 10665 5510 8090 8090 5510 0.341 0.500 0.500 0.500 0.500 926815 137016 409151 362579 131032 9.81 9.81 9.81 9.81 9.81 69.827 46.316 56.210 50.087 37.050

Table 5: Lateral load at joint

The maximum lateral load on the articulation joint is: F_y = 69.8 kN

To consider the load on the intermediate articulation joint due to the maximum force of the lateral damper, acting in paralle I, this force is applied additionally in the same load direction as worst case loadcase combination. Until a detailed bogie interface load specification is available, it shall be assumed with: FyD=10 kN.

4.2.5 ELC05 – Loads from longitudinal impact accelerations of the trailer bogie

The articulated intermediate joint shall be designed to work with trailer and motor bogies. Since the mass of the motor bogie is higher, ELC05 is not used.

4.2.6 ELCO6 – Loads from longitudinal impact accelerations of the motor bogie

According EN 12663-1, the impact load on the Jacobs motor bogie is:

 $F_{x,Bog} {=} a_{x,impact} {}^{*}m_{JMB} = 3 {}^{*}9.81 \ m/s \, {}^{_{2}} \, {}^{*} \, 9331 \ kg = 274.6 \ kN$

4.2.7 ELC07 – Loads from longitudinal accelerations

The longitudinal loads on the joint during service are defined by traction and braking loadcases. The maximum acceleration/deceleration for each loadcase is determined with the weight of the train in the corresponding weight condition (MXD500 for exceptional loadcases) and the sum of the traction or brake forces of all bogies. The three bogies on both ends of the train are motor bogies (see Figure 2), the rest is trailer bogies. The maximum traction force is F_{tract} =35 kN per axle and $F_{tract,bog}$ =70kN per bogie. The carbody and bogie masses are defined in[R6].

Project S-Bahn Cologne Loads Intermediate Articulated Joint

For a train with i cars, i-1 intermediate articulation joints are used and i+1 bogies.

A 11 car train, which is more critical than a 9 car train has 10 intermediate articulation joints and 12 bogies.

Since the value of the traction/brake forces differs between the bogies, the longitudinal forces need to be calculated for each joint separately. These calculations are given in detail in appendix A - 1 to A - 8.

For the case: Traction, 100% of bogies working, loading condition MND500 the detail calculations to derive the results from A-1 are shown exemplarily:

The maximum acceleration of the train is:

 $a_{tract,100\%} = F_{tract,100\%}/m_{train11,MND280}$

 $a_{tract,100\%}=6x70kN / 438901kg = 0.957 m/s^{2} = 0.0975g$

The most critical intermediate articulated joint is between the cars MW7 and MW6 (mirror symmetrical MW1-MW2), which is depicted in Figure 6.

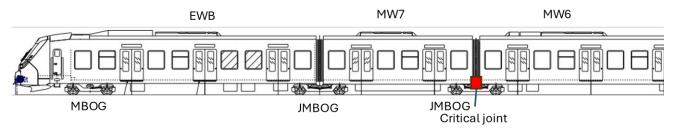
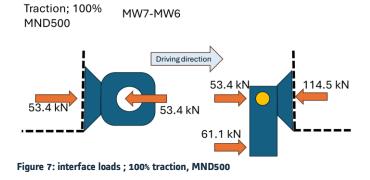


Figure 6: Location of critical joint

For the calculation of the joint forces, the forces and inertias on one side of the joint are summed up.


 $F_{x,tract100\%} = F_{tract,100\%} - (m_{EWB,MND500} + m_{MW7,MND500} + m_{MB0G} + 2^*m_{JMB0G})^* a_{tract,100\%} =$

 $F_{x,tract100\%}$ = 140 kN - (46557 kg + 26500 kg + 8542 kg + 8862 kg)*0.957 m/s² = 53.4 kN

The maximum traction force on the bogie pin is:

 $F_{\text{x1,B0g}} = F_{\text{tract,MB0G}} - a_{\text{tract}} * m_{\text{MB0G}} = 70 \text{ kN} - 0.957 \text{ m/s}^2 * 9331 \text{ kg} = 61.07 \text{kN}$

With the mounting direction of the joint as given in Figure 3, the following maximum interface forces shall be applied:

ALSTOM Project S-Bahn Cologne Loads Intermediate Articulated Joint

The arrows show the direction of the forces.

a. maximum longitudinal loads at joint:

The calculations in appendix A– 1 to A– 8 show, that the maximum longitudinal loads during operation are occurring with 50% traction and the maximum passenger mass (loading condition MND500) (see Appendix A– 3).

The maximum loads at the articulation joint are depicted in Figure 8.

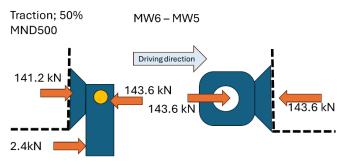
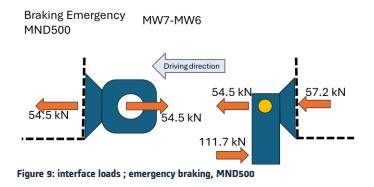
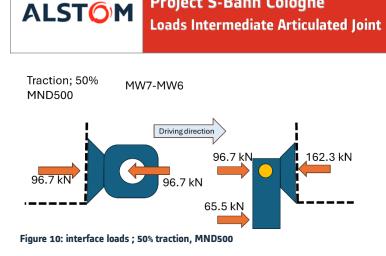



Figure 8: interface loads ; 50% traction, MND500

b. maximum longitudinal loads at centre pin:

The maximum longitudinal loads at centre pin are acting during emergency braking at the bogie between MW7 and MW6, where magnetic brakes are installed (see A– 8).


The loads for this case are depicted in Figure 9.

c. maximum longitudinal loads at carbody interface:

The calculations in appendix A-1 to A-8 show, that the maximum longitudinal loads at the carbody interface are occurring with 50% traction and the maximum passenger mass (loading condition MND500) (see Appendix A-3).

The force split up is depicted in Figure 10.

Project S-Bahn Cologne

4.2.8 ELCO8 - Lifting

The lifting loadcase on one car end is loading the intermediate articulation joint in Z-direction, since the car end of the adjacent car and the bogie must be lifted up, too. Furthermore the load must be scaled with a factor 1.1 according to EN 12663-1.

 $F^* * d_1 = m * g * (d_1 - xg_1) + m_b * g * (d_1 - e_1)$

The vertical load is determined, considering a static equilibrium of the re-railed vehicle (see Figure 11) and the formula:

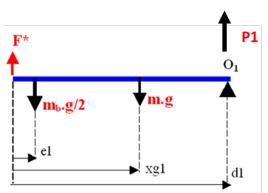


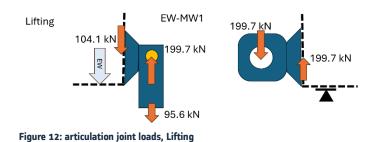
Figure 11: re-railing : equilibrium of forces/moments

F*: vertical load, acting on the articulation

reaction load on secondary suspension of other bogie of considered vehicle P1:

vertical load acting on the vehicle due to carbody mass m*g:

vertical load from hanging bogie m_b*q:


distance between articulation and Jacobs secondary suspension e1:

distance between the articulation and the centre of gravity of the vehicle xg1:

distance between articulation and the secondary suspension of the bogie d₁:

The maximum load on the joint due to lifting is for the case: MW1 is lifted, a partial mass of the end car EW and motor bogie mass are connected over the joint (see A- 9).

The corresponding loads at the joint are depicted in Figure 12.

4.3 Extraordinary loadcase combinations

According to EN 12663-1, the longitudinal compressive and tensile load cases shall be combined with the maximum vertical loads without scaling factors.

For the dimensioning of the intermediated articulated joint a longitudinal acceleration of $a_x=\pm 3g$ of the motor bogie is combined with the longitudinal coupler loads (ECOMB01-ECOMB04).

For the assessment of the margin of safety in case of crash, the bogie shall be loaded with a longitudinal acceleration of $a_x=\pm 5g$ against failure. The deformations shall be limited enough to ensure the functionality of the joint. For these investigations, ECOMBO3 and ECOMBO4 shall be adjusted.

For the extraordinary loads due to operation, traction with 50% traction power, the maximum lateral load due to lateral acceleration of the bogie and the maximum differential load as vertical load on the joint are superimposed (ECOMB05-08).

If there are additional loads due to pretension loads from the bolted assembly of the joint, they shall be considered in the load combinations, too.

Load- case	Fx1	FY1	FZ1	Fx,BOG	FY,BOG	FZ,BOG	Fy,D	Description of the Loadcase combination
ECOMB	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
								ECOMB01a/b=ELC01a/b + ELC02
01a	1000		69.6					F _{x1} = 1000 kN Coupler Tension
01b	1000		-69.6					+F _{Z1max} (maximum difference load of joint)
								ECOMB02a/b=ELC01a/b + ELC02
02a	1000		69.6					F _{x1} = 1000 kN Coupler Tension
02b	1000		-69.6					+F _{Z1max} (maximum difference load of joint)
03a	4500		69.6	27/ 6				ECOMB03a/b=ELC01a/b + ELC03 + ELC06
03b	-1500		-69.6	274.6				F_{x1} = 1500 kN Coupler Compression

The joint shall withstand the following load combinations:

Project S-Bahn Cologne Loads Intermediate Articulated Joint

								+F _{Z1max} (maximum difference load of joint)
								+F _{x,DG} = -3g* bogie mass
								ECOMB04a/b=ELC01a/b + ELC03 - ELC06
04a	-1500		69.6	-274.6				F _{x1} = 1500 kN Coupler Compression
04b	-1500		-69.6	-274.0				+Fz1max (maximum difference load of joint)
								-F _{x,DG} = 3g* bogie mass
								ECOMB05a/b=ELC01a/b + ELC07a + ELC04
05a	143.6	69.8	69.6	-2.4	-135.8		10	Prud'hommes Limit +F _{y1} -F _{yDG} -F _{yD}
05b	145.0	05.0	-69.6	-2.4	-155.0			+Traction 50% F _{x1} +F _{x,BOG}
							+Fz1max(maximum difference load of joint)	
								ECOMB06a/b=ELC01a/b + ELC07b + ELC04
06a	54.5	-69.8	69.6	-111.7	135.8		10	Prud'hommes Limit -F _{y1} +F _{yDG} -F _{yD}
06b	54.5	-09.8	-69.6	-111.7	135.8		-10	+EmergBrake500 F _{x1} -F _{x,B0G}
								+Fz1max(maximum difference load of joint)
								ECOMB07a/b=ELC01a/b + ELC07c + ELC04
07a	96.7	-69.8	69.6	65.5	135.8		10	Prud'hommes Limit +Fy1-FyDG-FyD
07b	96.7	-69.8	-69.6	5.5	135.8		10	+Traction 50% F _{x1} +F _{x,BOG}
								+Fz1max(maximum difference load of joint)
				1				ECOMB11a/b=ELC08a/b
11a			199.7					Lifting at MW1 with motor bogie and half of Mass
11b			-104.1			-95.6		MW2 attached
								Fz1=1.1g*(vertical load from carbody + mJMBOG)

Table 6: Extraordinary load combinations at articulation joint

4.4 Fatigue loadcases

The fatigue loads are based on the assumption, that all of the carbodies are loaded with a similar loading condition – for the following evaluation the weight condition MND280 is used for all carbodies.

As long as not described differently in the loadcase itself, each loadcase shall be evaluated as endurance limit loadcase (1E7 load cycles).

4.4.1 FLC01 – vertical fatigue load of intermediate articulation joint Fz1

The maximum vertical fatigue load is the maximum difference between the secondary spring loads of the two adjacent cars (MW4 – MW-Z2):

$$\begin{split} F_{z1_stat} = g^* (m_{MW-Z2,MND280} - m_{MW4,MND280})/2 \\ F_{Z1_stat} = -9.81 \text{m/s}^2 & (12728 \text{ kg} - 8756 \text{ kg})/2 = 19.5 \text{ kN} \\ F_{Z1_dyn} = \pm 0.15^* F_{Z1_stat} = \pm 2.9 \text{ kN} \end{split}$$

 $\label{eq:FLC01u:} F_{z1_max} = 1.15^* F_{z1_stat} = 22.4 \ kN$ FLC01I: $F_{z1_min} = 0.85^* F_{z1_stat} = 16.6 \ kN$

ALSTOM Project S-Bahn Cologne Loads Intermediate Articulated Joint

Depending on which side of the joint is connected to which car, the vertical difference force can have a positive or negative orientation. The joints are assembled according to a defined procedure and keep their position and orientation unchanged over the whole lifetime. Since the vertical fatigue difference load never occurs as an alternating load but is always defined by the heavier car end, two separate sets of load combinations (Group A / Group B) are defined are defined in Table 8.

4.4.2 FLC02/FLC03 - Lateral fatigue loads at intermediate articulation joint

The loading scenarios FLCO2 and FLCO3 are used in fatigue load combinations by superposition with traction/braking and vertical fatigue loads.

FLC02 – lateral load due to lateral acceleration of both carbodies

Both carbodies are accelerated in lateral direction according EN 12663-1. The resulting lateral force is transmitted by the elastic bump stop of the joint and the secondary springs. The bogie between EWB and MW7 (mirror symmetric MW1 and EWA) has the highest secondary spring load, which results in the most critical lateral fatigue loads:

$$\begin{split} F_{y,BOG} = & a_{y,fat} * (m_{EWB,secspring,MND280} + m_{MW7,secspring,MND280}) - 4 * F_{y,airspring} = & with \ 4 * \ F_{y,airspring} = 15 \ kN \\ F_{y,BOG} = & 0.15 * g^* (14376 \ kg + 11141 \ kg) - 15 \ kN = 22.5 \ kN \end{split}$$

The critical lateral load on the inter-car joint is defined by the heavier of both cars: $F_{y1}=F_{y,BOG}*[m_{EWB,secspring,MND280}/(m_{EWB,secspring,MND280}+m_{MW7,secspring,MND280})]$ $F_{y1}=22.5 \text{ kN}*(14376 \text{ kg}/(14376 \text{ kg} + 11141 \text{ kg})) = 12.7 \text{ kN}$

FLC02u:	F_{y1_max} = 12.7 kN; $F_{y,BOG}$ = -22.5 kN
FLC021:	F_{y1_min} = -12.7 kN; $F_{y,BOG}$ = 22.5 kN

FLC03 – lateral load at joint due to carbody movement in opposite directions

Two adjacent cars are accelerated in opposite directions so that the lateral load is transmitted only by the intermediate articulation joint (lateral bump stop of bogie not acting).

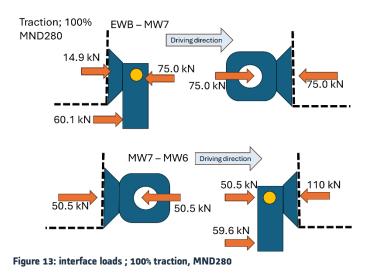
The intermediated articulated joint between MW6 and MW5 is the most critical one, because the lower secondary spring force of both adjacent bogies is the highest in the train.

$$\begin{split} F_{y1} = &a_{y,fat}^{*} (m_{MW5,secspring,MND280}) \\ F_{Y1} = &0.15^{*}g^{*}12994 \ kg = 19.1 \ kN \\ F_{y,BOG} = &a_{y,fat}^{*} (m_{MW6,secspring,MND280} - m_{MW5,secspring,MND280}) \\ F_{y,BOG} = &0.15^{*}g^{*} (13431 \ kg - 12994 \ kg) = 0.6 \ kN \end{split}$$

The fatigue load on the lateral damper is applied as counter load. Fatigue lateral damper load: F_{yD} = TBD

FLC03u:	F _{y1_max} = 19.1 kN;	$F_{y,BOG} = 0.6 \text{ kN}$	$F_{yD} = TBD$
FLC03I:	F _{y1_min} = -19.1 kN;	$F_{y,BOG} = -0.6 \text{ kN}$	$F_{yD} = TBD$

ALSTOM Project S-Bahn Cologne Loads Intermediate Articulated Joint


4.4.3 FLC04 - Fatigue loads at the intermediate articulation joint due to traction/braking

The longitudinal fatigue loads on the joint are defined by traction and braking loadcases. The maximum fatigue acceleration/deceleration is determined with the weight of the train in MND280 condition and the sum of the traction or brake forces of all bogies. Since the value of the traction/brake forces differs between the bogies, the longitudinal forces need to be calculated for each joint separately.

For a train with i cars, i-1 intermediate articulation joints are used and i+1 bogies. A 11 car train, which is more critical than a 9 car train has 10 intermediate articulation joints and 12 bogies.

a. fatigue loads from acceleration with 100% traction power

The joint forces due to this scenario are given in Appendix A– 2. The articulations joint with the highest loads are between EWB and MW7 and MW6. This scenario is the main scenario for the fatigue evaluation of the articulation joint.

Since the train can run in both directions, the force on the joint can act in both directions.

EWB – MW7:		
FLC04au:	$F_{x,tract100\%,min}$ = +75.0 kN,	F _{x,MBOG,tract} = -60.1kN
FLC04al:	F _{x,tract100%,max} = -75.0 kN,	$F_{x,MBOG,tract}$ = +60.1kN
MW7 – MW6:		
FLC04au:	$F_{x,tract100\%,min}$ = +50.5 kN,	$F_{x,MBOG,tract}$ = +59.6kN
FLC04al:	$F_{x,tract100\%,max}$ = -50.5 kN,	$F_{x,MBOG,tract}$ = -59.6kN

b. fatigue loads from acceleration with 50% traction power

According to the customer specification, the train shall be able to remain in operation with the loss of 50% of traction power. The most critical loadcase is if all motor bogies on one side of the train are failing and the train is powered only from the bogies on the opposite side.

The joint forces due to this scenario are given in Appendix A– 4. The loads are derived for the highest loaded articulation joints of FLC04a

The forces at the articulation joint are shown in Figure 14.

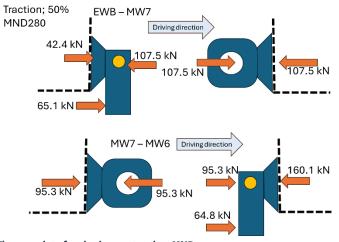


Figure 14: interface loads ; 50% traction, MND280

EWB - MW7:

FLC04bu:	$F_{x,tract100\%,min}$ = +107.5 kN,	$F_{x,MBOG,tract}$ = -65.1kN
FLC04bl:	F _{x,tract100%,max} = -107.5 kN,	F _{x,MBOG,tract} = +65.1kN

MW7 - MW6:

FLC04bu:	F _{x,tract100%,min} = +95.3 kN,	F _{x,MBOG,tract} = +64.8kN
FLC04bl:	F _{x,tract100%,max} = -95.3 kN,	F _{x,MBOG,tract} = -64.8kN

The occurrence of this kind of loadcase is quite rare. The Alstom return of experience from similar trains is an occurrence of once per year. With a vehicle lifetime of 34 years and a maximum of 60 stations for tour and detour this sums up to a number of load cycles of:

n_{tract50%}= 1 occurrence/year * 34 year * 60 (stations) = 2040 cycles.

To be conservative the loadcase shall be considered with **n = 5000 cycles**.

c. fatigue loads from emergency breaking

The loads on the intermediate articulation joint from service breaking are lower than then loads due to acceleration, since the break forces are more evenly distributed over the train.

The fatigue loads from emergency breaking are not covered by the traction loadcases, since the magnetic brake on the 3rd and 9th bogie leads to high forces at the traction pin.

The calculation of the load is given in Appendix A– 6. The forces on the articulation joint are shown in Figure 15.

Project S-Bahn Cologne Loads Intermediate Articulated Joint

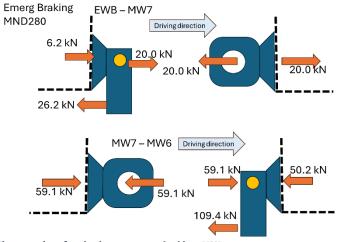


Figure 15: interface loads ; emergency braking, MND280

EWB - MW7:

FLC04cu:	$F_{x,tract100\%,min}$ = +20.0 kN,	$F_{x,MBOG,tract}$ = -26.2kN
FLC04cl:	F _{x,tract100%,max} = -20.0 kN,	F _{x,MBOG,tract} = +26.2kN

MW7 - MW6:

FLC04cu:	$F_{x,tract100\%,min}$ = +59.1 kN,	$F_{x,MBOG,tract}$ = -109.4kN
FLC04cl:	F _{x,tract100%,max} = -59.1 kN,	$F_{x,MBOG,tract}$ = +109.4kN

The occurrence of this kind of loadcase is quite rare. Although the Alstom return of experience from similar trains is an occurrence of once per week, an occurrence of once per day is assumed as conservative approach.

With a vehicle lifetime of 34 years and 365 occurrences per year, this sums up to a number of load cycles of: $n_{emerg_break\%} = 1$ occurrence/day * 34 year = 365*34 = **12410 cycles**.

d. load collective for longitudinal loads

The load collective for the longitudinal fatigue loads consists of the loadcases and their corresponding number of load cycles, given in Table 7. The number of cycles for the 100% traction loadcase as the normal operation case is filled up, so that the overall number of load cycles in the collective is 10 million load cycles. The damage equivalent load for endurance limit evaluation is given for Wohler curve slopes m=5 and m=7.

Project S-Bahn Cologne

Loads Intermediate Articulated Joint

Compute		EWB -	- MW7	MW7 -	No. of sucles	
Scenario		F _{x1} [kN]	F _{x_BOG} [kN]	F _{x1} [kN]	F _{x_BOG} [kN]	No. of cycles
50% Traction	Upper	+107.5	-65.1	+95.3	+64.8	5000
	Lower	-107.5	+65.1	-95.3	-64.8	5000
Emergency braking	Upper	+20.0	-26.2	+59.1	-109.4	12410
Elliergency braking	Lower	-20.0	-26.2	-59.1	109.4	12410
100% Traction (normal	Upper	+75.0	-60.1	+50.5	+59.6	9 982 590
operation)	Lower	-75.0	+60.1	-50.5	-59.6	9 982 590
Damage Equivalent	Upper	+75.02	-60.09	+50.63	+59.8	10 000 000
load m=5	Lower	-75.02	+60.09	-50.63	-59.8	10 000 000
Damage Equivalent	Upper	+75.05	-60.09	+50.82	+60.31	10,000,000
load m=7	Lower	-75.05	+60.09	-50.82	-60.31	10 000 000

Table 7: load collective for longitudinal fatigue loads for endurance limit approach (1E7 load cycles)

4.5 Fatigue Load Combinations

The upper and lower vertical fatigue load (FLCO1u, FLCO1l) is superimposed with the longitudinal and lateral fatigue loadcases of FLCO2 to FLCO4. Loadgroup A and Loadgroup B from Table 8 are two separate fatigue scenarios depending on the installation direction of the joint. Loadgroup A combines the longitudinal fatigue loads of the first joint (EWB-MW7: Center pin on side of train end) with the maximum vertical and lateral fatigue loads. Loadgroup B combines the longitudinal fatigue loads of the second joint (EW7-MW6: Center pin on side of train middle) with the maximum vertical and lateral fatigue loads.

Load- case	Fx1	FY1	FZ1	Fx,BOG	FY,BOG	Fy,D	Description of the Loadcase combination				
FCOMB	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]					
23	F _{x1}	12.7	22.4	F _{x,BOG}	-22.5		FCOMB 23 = FLC01u +FLC02u +FLC04u				
24	F _{x1}	12.7	16.6	F _{x,BOG}	-22.5		FCOMB 24 = FLC01l +FLC02u +FLC04u				
25	F _{x1}	-12.7	22.4	F _{x,BOG}	22.5		FCOMB 25 = FLC01u +FLC02l +FLC04u				
26	F _{x1}	-12.7	16.6	F _{x,BOG}	22.5	22.5 FCOMB 26 = FLC01l +FLC02l +FLC0					
27	-F _{x1}	12.7	22.4	- F _{x,BOG}	-22.5		FCOMB 27 = FLC01u +FLC02u +FLC04l				
28	-F _{x1}	12.7	16.6	- F _{x,BOG}	-22.5		FCOMB 28 = FLC01l +FLC02u +FLC04l				
29	-F _{x1}	-12.7	22.4	- F _{x,BOG}	22.5		FCOMB 29 = FLC01u +FLC02l +FLC04l	adgroup A EWB-MW7)			
30	-F _{x1}	-12.7	16.6	- F _{x,BOG}	22.5		FCOMB 30 = FLC01l +FLC02l +FLC04l	Loadgroup A x: EWB-MW			
31	F _{x1}	19.1	22.4	F _{x,BOG}	0.6	TBD	FCOMB 31 = FLC01u +FLC03u +FLC04u	adgr EVVE			
32	F _{x1}	19.1	16.6	F _{x,BOG}	0.6	TBD	FCOMB 32 = FLC01l +FLC03u +FLC04u	Loi (Fx: I			
33	F _{x1}	-19.1	22.4	F _{x,BOG}	-0.6	TBD	FCOMB 33 = FLC01u +FLC03l +FLC04u				
34	F _{x1}	-19.1	16.6	F _{x,BOG}	-0.6	TBD	FCOMB 34 = FLC01l +FLC03l +FLC04u				
35	-F _{x1}	19.1	22.4	- F _{x,BOG}	0.6	TBD	FCOMB 35 = FLC01u +FLC03u +FLC04l				
36	-F _{x1}	19.1	16.6	- F _{x,BOG}	0.6	TBD	FCOMB 36 = FLC01l +FLC03u +FLC04l				
37	-F _{x1}	-19.1	22.4	- F _{x,BOG}	-0.6	TBD	FCOMB 37 = FLC01u +FLC03l +FLC04l				
38	-F _{x1}	-19.1	16.6	- F _{x,BOG}	-0.6	TBD	FCOMB 38 = FLC01l +FLC03l +FLC04l				
39	F _{x1}	12.7	-22.4	F _{x,BOG}	-22.5		FCOMB39=-FLC01u+FLC02u+FLC04u	b u			
40	F _{x1}	12.7	-16.6	F _{x,BOG}	-22.5		FCOMB40=-FLC01l+FLC02u+FLC04u	Load grou			

Project S-Bahn Cologne

Loads Intermediate Articulated Joint

Load- case	Fx1	FY1	FZ1	Fx,BOG	FY,BOG	Fy,D	Description of the Loadcase combination
FCOMB	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
41	F _{x1}	-12.7	-22.4	F _{x,BOG}	22.5		FCOMB41=-FLC01u+FLC02l+FLC04u
42	F _{x1}	-12.7	-16.6	F _{x,BOG}	22.5		FCOMB42=-FLC01l+FLC02l+FLC04u
43	-F _{x1}	12.7	-22.4	- F _{x,BOG}	-22.5		FCOMB43=-FLC01u+FLC02u+FLC04l
44	-F _{x1}	12.7	-16.6	- F _{x,BOG}	-22.5		FCOMB44=-FLC01l+FLC02u+FLC04l
45	-F _{x1}	-12.7	-22.4	- F _{x,BOG}	22.5		FCOMB45=-FLC01u+FLC02l+FLC04l
46	-F _{x1}	-12.7	-16.6	- F _{x,BOG}	22.5		FCOMB46=-FLC01I+FLC02I+FLC04I
47	F _{x1}	19.1	-22.4	F _{x,BOG}	0.6	TBD	FCOMB47=-FLC01u+FLC03u+FLC04u
48	F _{x1}	19.1	-16.6	F _{x,BOG}	0.6	TBD	FCOMB48=-FLC01l+FLC03u+FLC04u
49	F _{x1}	-19.1	-22.4	F _{x,BOG}	-0.6	TBD	FCOMB49=-FLC01u+FLC03l+FLC04u
50	F _{x1}	-19.1	-16.6	F _{x,BOG}	-0.6	TBD	FCOMB50=-FLC01l+FLC03l+FLC04u
51	-F _{x1}	19.1	-22.4	- F _{x,BOG}	0.6	TBD	FCOMB51=-FLC01u+FLC03u+FLC04l
52	-F _{x1}	19.1	-16.6	- F _{x,BOG}	0.6	TBD	FCOMB52=-FLC01I+FLC03u+FLC04I
53	-F _{x1}	-19.1	-22.4	- F _{x,BOG}	-0.6	TBD	FCOMB53=-FLC01u+FLC03l+FLC04l
54	-F _{x1}	-19.1	-16.6	- F _{x,BOG}	-0.6	TBD	FCOMB54=-FLC01I+FLC03I+FLC04I

Table 8: Fatigue loadcase combinations ; ECOMBXXa : negative vertical loading ; ECOMBXXb : positive vertical loading

The structural evaluation of the load combinations of Table 8 and the single load cases of chapter 4.4 shall be performed according DTRF150209 [R4].

To determine the critical range for the fatigue evaluation, ranges between all FCOMB within one Load group shall be created. It is not necessary to create ranges between the two Load groups.

A – APPENDICES

A-1 Longitudinal Joint Loads (MND500, 100% traction)

MND500 100% traction | input data

	Wive 500_100% traction hiput data																						
	CBS	EW	/B	M	W7	MV	/6	M	W5	MM	V-Z2	M	V4	MW	-Z1	M	W3	M	N2	MW	/1	EV	VA
	CBS mass [kg]	315	24	15	103	17398		15613		115	521	158	15862 11		21	15	15613 1		17398 15		15102 315		514
	Normal Payload [kg]	150	33	3 1139		16499		164	199	113	11397		7168 1139		1397 16		499	164	.6499		11397 1		033
	Total CBS mass [kg]	465	57	26	500	338	97	321	112	229	918	330	30	229	18	32	112	338	97	2649	26499 46		547
	Bogie	MB	N	IB	M	B	TI	в	т	в	Т	в	Т	в	т	В	Т	в	M	B	M	3	MB
	Bogie mass [kg]	3798	4	150	46:	19	21	75	20	084	20	084	20	084	208	4.0	217	75.0	461	.9.0	415	0.0	3798
	Rotational mass [kg]	4744	4	712	47:	12	28	55	25	12	25	512	25	512	2512.0		285	55.0	4712.0		471	2.0	4744
	Total Bogie mass [kg]	8542	8	362	933	31	5030 0		4596 0		45	4596 0		4596 4596 0 0		96.0 50 0		80.0	933	1.0	886	2.0	8542
-	Number of motor bogie	1		1	1						(0		1 1			1
Traction	Traction acceleration [G]					0.0975																	
	Total trainset mass [kg]					438901																	
	Traction Force per Bogie [N]	70000	70	000	700	00	C)	0		0		0		0		0		70000		70000		70000
	Inertia Force per Bogie [N]	8174	8	180	893	29	48	13	43	4398		4398		4398	4398		4813		8929		8480		8174
	Traction Force per Pivot/Traction bar [N]	61826	61	520	610	071	-48	13	-43	398	-43	398	-43	398	-43	198	-41	-4813		071	61520		61826
	Inertia Force per CBS [N]	445	52	25	359	324	37	307	729	219	931	316	31608		21931		729	324	2437		58	445	42
	Male/Female Joint		f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	-
	Coupler/articulation interface force [kN]	0.00	78.79	-78.79	53.43	-114.51	77.25	-77.25	46.53	-42.13	20.20	-15.80	-20.21	20.21	-46.54	46.54	-77.27	82.08	-53.45	53.45	-78.80	17.28	0.00
	Articulation Pin Force [kN]	-	78.79 53.43			77.	77.25 46.5					20.20 20.21		46.	.54	77.27		53.45		78.	78.80		

A- 2 Longitudinal Joint Loads (MND280, 100% traction)

	MND280_100% traction input data									25													
	CBS	EW	/B	M	N7	MV	V6	MI	N5	MV	V-Z2	M	N4	MM	I-Z1	M	N3	M	W2	MV	/1	EV	JA
	CBS mass [kg]	315	24	151	103	17398		156	513	11	11521		15862		.1521 15		15613 1		17398 1		02	315	514
	Normal Payload [kg]	940	04	68	75	101	10102		L02	68	6875		230	6875		101	102	10	10102		6875		04
	Total CBS mass [kg]	409	28	219	978	275	00	25	715	18	396	26	092	183	96	257	715	27	500	219	21977		918
	Bogie	MB	M	в	M	3	Т	в	Т	в	Т	в	т	в	Т	3	т	в	ME	3	M	в	MB
	Bogie mass [kg]	3798	41	50	46:	19	21	75	20	084	20	084	20	084	208	4.0	217	75.0	4619	9.0	415	0.0	3798
	Rotational mass [kg]	4744	47	12	47:	12	28	55	25	512	25	512	25	512	251	2.0	285	55.0	4712	2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	88	62	93	31	5030		4596		4596		45	4596 459		4596.0		30.0	9331.0		8862.0		8542
-	Number of motor bogie	1	1	L	1		0		0			0		0 0		0		1		1		1	
Traction	Traction acceleration [G]					0.1136																	
	Total trainset mass [kg]			377029																			
	Traction Force per Bogie [N]	70000	700	000	700	00	()	0		0		0		0		0		70000		70000		70000
	Inertia Force per Bogie [N]	9516	98	72	103	94	56	03	3 51		51	5120		5120	5120		5603		103	394 <u></u>		9872	
	Traction Force per Pivot/Traction bar [N]	60484	601	128	596	06	-56	03	-5:	120	-51	-5120		120	-51	20	-5603		596	59606		28	60484
	Inertia Force per CBS [N]	455	93	244	183	306	34	280	546	204	493	29	29066		193	286		5 30		244	82	455	82
	Male/Female Joint		f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	-5
	Coupler/articulation interface force [kN]	0.00	75.02	-75.02	50.54	-110.14	73.90	-73.90	45.26	-40.14	19.65	-14.53	-19.66	19.66	-45.27	45.27	-73.92	79.52	-50.55	50.55	-75.03	14.90	0.00
	Articulation Pin Force [kN]	-	75.	.02	50.	54	73.	.90	45	.26	19	.65	19	.66	45.	27	73.92		50.55		75.	75.03	

A- 3 Longitudinal Joint Loads (MND500, 50% traction)

	MND500_50% traction input data																						
	CBS	EV	/B	M	N7	MV	V6	MV	N5	MW	V-Z2	M	W4	MV	V-Z1	M	W3	M	W2	MV	/1	EW	A
	CBS mass [kg]	315	24	15:	103	173	98	156	513	115	521	15	862	11	521	15	613	17	398	151	02	315	14
	Normal Payload [kg]	150	33	113	397	164	99	164	199	113	397	17	168	11	397	16	499	16	499	113	97	150	33
	Total CBS mass [kg]	465	57	26	500	338	97	321	.12	229	918	33	030	22!	918	32	112	33	897	264	99	4654	47
[Bogie	MB	М	В	M	В	Т	В	Т	В	т	В	-	тв	Т	в	Т	ГВ	М	В	M	3	MB
	Bogie mass [kg]	3798	41	50	46:	19	21	75	20	84	20	184	20	084	208	34.0	217	75.0	461	9.0	415	0.0	3798
	Rotational mass [kg]	4744	47	12	47:	12	28	55	25	12	25	12	2!	512	251	L2.0	285	55.0	471	2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	88	52	93	31	50	30	45	96	45	96	4	596	459	96.0	503	30.0	933	1.0	886	2.0	8542
-	Number of motor bogie	1	1		1		C)	C	D		0		0		0	1	0	0)	0		0
Traction	Traction acceleration [G]											0.04	88										
	Total trainset mass [kg]											4389	01										
	Traction Force per Bogie [N]	70000	700	00	700	00	0)	0	0		2		0	3	0		0	0)	0		0
	Inertia Force per Bogie [N]	4087	42	40	44	55	24	07	21	.99	21	.99	2:	199	21	.99	24	407	44	65	424	10	4087
[Traction Force per Pivot/Traction bar [N]	65913	657	60	655	35	-24	107	-21	199	-21	199	-2	199	-2:	199	-24	407	-44	65	-42	40	-4087
	Inertia Force per CBS [N]	222	76	120	579	162	19	153	865	109	966	15	804	10	966	15	365	16	219	126	79	222	71
	Male/Female Joint	-	f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	
	Coupler/articulation interface force [kN]	0.00	109.40	-109.40	96.72	-162.25	143.63	-143.63	128.26	-126.06	115.10	-112.90	94.90	-94.90	81.73	-81.73	66.37	-63.96	43.28	-43.28	30.60	-26.36	0.00
	Articulation Pin Force [kN]	n Force [kN] - 109.40 96.72						.63	128	3.26	115	5.10	94	4.90	81	.73	66	5.37	43.	28	30.	60	

A- 4 Longitudinal Joint Loads (MND280, 50% traction)

n	MND280_50% traction input data																						
	CBS	EW	B	M	N7	MV	V6	M	W5	MW	I-Z2	MV	N4	MW	I-Z1	M	W3	M	N2	MW	V1	EW	IA
	CBS mass [kg]	315	24	151	103	173	98	150	613	115	521	158	362	115	521	150	613	17	398	151	02	315	14
	Normal Payload [kg]	940	14	68	75	101	02	10:	102	68	75	102	230	68	75	10:	102	10:	102	687	75	94	04
	Total CBS mass [kg]	409	28	219	978	275	00	25	715	183	396	260	92	183	196	25	715	27	500	219	77	409	18
	Bogie	MB	M	В	M	3	т	в	7	TB	т	в		ГВ	т	В	1	ГВ	M	В	м	В	MB
	Bogie mass [kg]	3798	415	50	46:	19	21	.75	20	084	20	184	2	084	208	4.0	21	75.0	461	.9.0	415	0.0	3798
	Rotational mass [kg]	4744	471	12	47:	2	28	155	25	512	25	12	2!	512	251	2.0	28	55.0	471	2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	886	52	933	31	50	30	45	596	45	96	4	596	459	6.0	50	30.0	933	1.0	886	2.0	8542
12 12	Number of motor bogie	1	1		1		(D		0	(0		0	C)		0	()	C		0
Traction	Traction acceleration [G]				~				8			0.056	58										
	Total trainset mass [kg]											3770	29										
	Traction Force per Bogie [N]	70000	700	00	700	00	(D	3	0	(0		0	C)		0	0)	C	Ű.	0
	Inertia Force per Bogie [N]	4758	493	36	519	97	28	02	25	560	25	60	2	560	25	60	28	302	51	97	49	36	4758
	Traction Force per Pivot/Traction bar [N]	65242	650	64	648	03	-28	302	-2	560	-25	60	-2	560	-25	60	-2	802	-51	.97	-49	36	-4758
	Inertia Force per CBS [N]	227	96	122	241	153	17	143	323	102	246	145	33	102	246	143	323	15:	817	122	41	227	91
	Male/Female Joint	-	f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	-
	Coupler/articulation interface force [kN]	0.00	107.51	-107.51	95.27	-160.07	141.95	-141.95	127.63	-125.07	114.82	-112.26	95.17	-95.17	82.36	-82.36	68.04	-65.24	44.73	-44.73	32.48	-27.55	0.00
	Articulation Pin Force [kN]	-	107.	.51	95.	27	141	L.95	12	7.63	114	1.82	95	5.17	82.	36	68	3.04	44.	73	32.	48	

A-5 Longitudinal Joint Loads (MND280, Service braking)

25	MND500_emerg braking input data																						
	CBS	EV	/B	M	N7	M	W6	M	N5	MM	V-Z2	M	W4	MW	-Z1	MI	W3	M	W2	MV	V1	EV	A
	CBS mass [kg]	315	24	15:	103	17	398	156	513	11	521	158	862	115	21	150	613	17	398	151	.02	315	14
	Normal Payload (kg)	150	133	113	397	16	499	164	199	11	397	17:	168	113	97	164	499	16	499	113	97	150	133
	Total CBS mass [kg]	465	57	26	500	33	897	321	12	22!	918	330	030	229	18	32:	112	33	897	264	99	465	47
	Bogie	MB	N	IB	М	в	Т	в	1	тв	Т	в	1	гв	т	в	Т	в	М	в	M	в	MB
	Bogie mass [kg]	3798	4:	150	46	19	21	75	2	084	20	84	20	084	208	4.0	217	75.0	461	.9.0	415	0.0	3798
	Rotational mass [kg]	4744	47	712	47	12	28	55	2	512	25	12	25	512	251	.2.0	285	55.0	471	.2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	88	362	93	31	50	30	4	596	45	96	45	596	459	6.0	503	30.0	933	1.0	886	2.0	8542
0.11	Number of magnetic brakes	0		0	1		()		0	C			0	()		0	1	L	0		0
Braking	Traction acceleration [G]											-0.15	61										
	Total trainset mass [kg]											4389	01										
	Brake Force per Bogie [N]	-42000	-42	2000	-126	000	-420	000	-42	2000	-420	000	-42	2000	-42	000	-42	000	-126	000	-420	000	-42000
	Inertia Force per Bogie [N]	-13079	-13	1569	-14	287	-77	01	-7	037	-70	37	-70	037	-70	137	-73	701	-14:	287	-135	569	-13079
	Brake Force per Pivot/Traction bar [N]	-28921	-28	8431	-111	713	-34	299	-34	4963	-34	963	-34	1963	-34	963	-34	299	-111	713	-284	131	-28921
	Inertia Force per CBS [N]	-712	283	-40	574	-51900		-49	167	-35	090	-50	572	-35	090	-49	167	-51	900	-405	573	-71	268
	Male/Female Joint		f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	
	Coupler/articulation interface force [kN]	0.00	13.93	-13.93	54.50	57.21	-39.61	39.61	9.56	25.40	9.69	25.28	-9.67	9.67	-9.54	9.54	39.62	-5.33	-54.49	54.49	-13.92	42.35	0.00
	Articulation Pin Force [kN]	-	13	.93	54.	50	39.	.61	9	.56	9.0	59	9.	.67	9.	54	39	.62	54.	.49	13.	92	

A- 6 Longitudinal Joint Loads (MND280, Emergency braking)

14	MND280_service braking input data																						
	CBS	EV	VB	M	W7	M	W6	M	W5	MV	N-Z2	MW	/4	MW	I-Z1	M	W3	M	W2	M	N1	EV	IA
	CBS mass [kg]	315	524	15	103	17	398	150	613	11	1521	1586	62	115	521	15	613	17	398	151	102	315	14
	Normal Payload [kg]	94	04	6875			102	10:	102	61	875	1023	30	68	75	10	102	10	102	68	75	94	04
	Total CBS mass [kg]	409	28	21	978	27	500	25	715	18	396	2609	92	183	396	25	715	27	500	219	977	409	18
	Bogie	MB	N	IB	M	В	Т	В	1	гв	TB		т	в	т	в	Т	TB .	M	B	M	В	MB
	Bogie mass [kg]	3798	4:	150	46:	19	21	75	2	084	2084		20	84	208	34.0	217	75.0	461	19.0	415	0.0	3798
	Rotational mass [kg]	4744	47	712	47:	12	28	55	2	512	2512		25	12	251	12.0	285	55.0	471	12.0	471	.2.0	4744
	Total Bogie mass [kg]	8542	88	362	933	31	50	30	4	596	4596		45	96	459	96.0	503	30.0	933	81.0	886	2.0	8542
	Number of braking bogies	1		1	1		()		0	0		0)	(D	1	0	:	1	1	L	1
Braking	Traction acceleration [G]											-0.124	10										
	Total trainset mass [kg]											37702	19										
	Brake Force per Bogie [N]	-71761	-73	3522	-735	522	-35	22	-3	522	-3522		-35	522	-35	522	-35	522	-73	522	-73	522	-71761
	Inertia Force per Bogie [N]	-10393	-10	0783	-113	353	-61	20	-5	592	-5592		-55	92	-59	592	-6:	120	-11	353	-10	783	-10393
	Brake Force per Pivot/Traction bar [N]	-61368	-62	739	-621	169	25	98	2	070	2070		20	70	20	70	25	598	-62	169	-62	739	-61368
	Inertia Force per CBS [N]			-33	460	-31	288	-22	2383	-3174	47	-22	383	-31	.288	-33	3460	-26	740	-49	/86		
	Male/Female Joint	-	f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	-
	Coupler/articulation interface force [kN]	0.00	-74.31	74.31	-47.57	109.74	-73.68	73.68	-42.39	40.32	-17.94	15.87	17.95	-17.95	42.40	-42.40	73.69	-76.29	47.58	-47.58	74.32	-11.58	0.00
	Articulation Pin Force [kN]	- 74.31 47.57				73.	.68	42	.39	17.94		17.	.95	42	.40	73	.69	47	.58	74	.32		

A-7 Longitudinal Joint Loads (MND500, Service braking)

24	MND500_service braking input data																						
	CBS	EV	/B	M	N7	M	N6	M	N5	MM	V-Z2	M	N4	MW	-Z1	M	N3	M	N2	MV	V1	EW	A
	CBS mass [kg]	315	i24	15:	103	173	398	150	13	11	521	158	362	115	21	150	513	173	198	151	.02	315	14
	Normal Payload [kg]	150	133	113	397	164	199	164	99	11	397	171	168	113	97	164	199	164	99	113	97	150	.33
	Total CBS mass [kg]	465	57	26	500	338	397	321	.12	22!	918	330	030	229	18	32:	112	338	97	264	99	465	.47
	Bogie	MB	N	IB	M	3	TI	в	Т	в	Т	в	т	в	т	в	т	В	М	в	М	в	MB
	Bogie mass [kg]	3798	41	.50	461	.9	21	75	20	084	20	84	20	184	208	4.0	217	5.0	461	9.0	415	0.0	3798
	Rotational mass [kg]	4744	47	/12	471	.2	28	55	25	12	25	12	25	12	251	2.0	285	5.0	471	2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	88	362	933	1	50	30	45	96	45	96	45	96	459	6.0	503	0.0	933	1.0	886	2.0	8542
	Number of braking bogies	1		1	1		C)		0	C)	(0	C)	()	1		1		1
Braking	Traction acceleration [G]											-0.10	65										
	Total trainset mass [kg]											4389	01										
	Brake Force per Bogie [N]	-71761	-73	522	-735	22	-35	22	-3	522	-35	22	-35	522	-35	22	-35	522	-73	522	-73	522	-71761
	Inertia Force per Bogie [N]	-8928	-9	263	-97	53	-52	157	-41	804	-48	04	-48	304	-48	04	-52	257	-97	53	-92	63	-8928
	Brake Force per Pivot/Traction bar [N]	-62833					17	35	12	182	12	82	12	82	12	82	17	35	-63	769	-64	259	-62833
	Inertia Force per CBS [N]	-48	562	-27	698	-35429		-33	564	-23	954	-34	523	-239	954	-33	564	-354	129	-276	597	-486	i51
	Male/Female Joint		f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	-
	Coupler/articulation interface force [kN]	0.00	-78.43	78.43	-50.73	114.50	-77.34	77.34	-43.77	42.49	-18.54	17.26	18.55	-18.55	43.78	-43.78	77.35	-79.08	50.74	-50.74	78.44	-14.18	0.00
	Articulation Pin Force [kN]	78.43 50.73				77.	.34	43	.77	18.	.54	18	.55	43.	78	77	.35	50.	74	78.	44		

A-8 Longitudinal Joint Loads (MND500, Emergency braking)

14	MND500_emerg braking input data																						
2	CBS	EV	/B	M	W7	M	W6	M	N5	MM	V-Z2	M	N4	MM	I-Z1	MI	W3	M	W2	M	V1	EV	NA
	CBS mass [kg]	315	24	15	103	17	398	156	13	11	521	158	362	115	521	150	513	17	398	151	.02	315	514
	Normal Payload [kg]	150	133	11	397	16	499	164	99	11	397	171	168	113	397	164	499	16	499	113	97	150	033
	Total CBS mass [kg]	465	57	26	500	33	897	321	12	22!	918	330	030	229	918	32:	112	33	897	264	99	465	547
	Bogie	MB	1	MB	М	В	т	в	T	ГВ	TI	3	Т	в	т	в	Т	в	M	в	м	3	MB
	Bogie mass [kg]	3798	4	150	46	19	21	75	20	084	20	14	20	184	208	4.0	217	75.0	461	9.0	415	0.0	3798
	Rotational mass [kg]	4744	4	712	47	12	28	55	25	512	25:	.2	25	12	251	2.0	285	55.0	471	2.0	471	2.0	4744
	Total Bogie mass [kg]	8542	8	862	93	31	50	30	45	596	45	16	45	96	459	6.0	503	80.0	933	1.0	886	2.0	8542
	Number of magnetic brakes	0		0	1		()		0	0	S		C	C)		D	1		a		0
Braking	Traction acceleration [G]											-0.15	61										
	Total trainset mass [kg]											4389	01										
	Brake Force per Bogie [N]	-42000	-4	2000	-126	000	-420	000	-42	000	-420	00	-42	000	-420	000	-42	000	-126	000	-420	00	-42000
	Inertia Force per Bogie [N]	-13079	-1	3569	-14	187	-77	01	-70	037	-70	37	-70	037	-70	37	-73	701	-142	287	-135	69	-13079
	Brake Force per Pivot/Traction bar [N]	-28921	-2	8431	-111	713	-34	299	-34	1963	-349	63	-34	963	-34	963	-34	299	-111	713	-284	31	-28921
	Inertia Force per CBS [N]	-71	283	-40	574	-51	900	-49	L67	-35	090	-50	572	-35	090	-49	167	-51	900	-40	573	-71	.268
	Male/Female Joint		f	m	m	f	f	m	m	f	m	f	f	m	f	m	m	f	f	m	m	f	
	Coupler/articulation interface force [kN]	0.00	13.93	-13.93	54.50	57.21	-39.61	39.61	9.56	25.40	9.69	25.28	-9.67	9.67	-9.54	9.54	39.62	-5.33	-54.49	54.49	-13.92	42.35	0.00
	Articulation Pin Force [kN]	-	13.93 54.50			39.	.61	9.	.56	9.6	9	9.	67	9.5	54	39	.62	54.	49	13.	92		

A-9 Vertical loads : Lifting with bogie attached

Configuration	EW-MW1	MW1-MW2	MW2-MW3	MW3-MW_ZW	MW_ZW-MW4
m _b [kg]	8862	9331	5030	4596	4596
Re-railed vehicle	MW1	MW2	MW3	MW-ZW	MW4
M _{running_order} [kg]	31524	15103	17398	15613	11521
e1[mm]	0	0	0	0	0
d1 [mm]	16180	11020	16180	16180	11020
x _{g1} [mm]	11231	5510	8090	8090	5510
F* [kN]	199.680	182.179	148.150	133.835	111.757
Weight acting on the articulation [kg]	20354.72	18570.75	15101.90	13642.75	11392.15
bogie lifting load [kN]	95.630	100.691	54.279	49.595	49.595
Re-railed vehicle	EW	MW1	MW2	MW3	MW-ZW
M _{running_order} [kg]	15130	17398	15613	11521	15862
e1 [mm]	0	0	0	0	0
d1 [mm]	11020	16180	16180	11020	16180
x _{g1} [mm]	5510	8090	8090	5510	8090
F* [kN]	177.264	194.562	138.519	111.757	135.179
Weight acting on the articulation [kg]	18069.70	19833.00	14120.15	11392.15	13779.70
bogie lifting load [kN]	95.630	100.691	54.279	49.595	49.595